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Abstract

The need for a global monitoring system for Internet
worm detection is clear. Likewise, the need for local
detection and response is also obvious. In this study,
we used a large data set to review some of the worm
monitoring and detection strategies proposed for large
networks, and found them difficult to apply to local
networks. In particular, the Kalman filter and victim
number-based approaches proved unsuitable for smaller
networks. They are of course appropriate for large sys-
tems, but what work well for local networks?

We propose two algorithms tailored for local network
monitoring needs. First, the Destination Source Corre-
lation (DSC) algorithm focuses on the infection relation,
and tracks real infected hosts (and not merely scans) to
provide an accurate response. Second, the HoneyStat
system provides a way to track the short-term infection
behavior used by worms. Potentially, this provides a ba-
sis for statistical inference about a worm’s behavior on a
network.

1 Introduction

In recent years, there have been multiple algorithms for
worm early detection, e.g., [22, 1, 21]. Much of the re-
cent work has suggested the need for large (220 host)
networks to detect worm outbreaks [22, 1, 21]. Thus,
many have called for the creation of a cyber “Center for

Disease Control” (CDC) [18].

Our study confirms the value of this approach, but there
are valid reasons why a CDC model alone might require
improvement. First, a CDC for one million monitored
hosts (or more) will have to overcome significant pri-
vacy concerns. Many corporations may be unwilling to
share data with each other, and customers privacy con-
cerns will present barriers to those willing to consider
such a proposal.

Second, even if there is sufficient buy-in for a CDC
model, it may not always provide useful immediate in-
formation to all participants. While most participants
in a collaborative monitoring project would benefit from
early warnings, the worm detection game requires vic-
tims. Potentially, this means one participant will hear
about a worm outbreak only after it has affected his/her
network. Similarly a contributor to a CDC monitoring
system might have enough local information to conclude
there is a worm, based on additional information not
shared with others. Timely local warnings can provide a
second layer of assurance, and help minimize damage.

All of the approaches for the CDC model require the use
of large networks to gather data. For this reason, much
of the work so far was based on simulations or small
data captures. Using data from a 25,000 node network,
we consider whether these CDC-scale approaches can
help smaller networks detect worms.

Our analysis first looks at whether the monitoring strate-
gies proposed for the CDC model can be used on smaller
networks. Based on a substantial amount of real network
data, we conclude the detection strategies used by the
larger networks are sometimes problematic, and need re-
finement. They can work on smaller networks, but were
obviously not designed for such scenarios.



We therefore consider other algorithms that local net-
works can deploy. We have designed two new detection
algorithms. The first one focuses on investigation of the
worm infection relationship among hosts. Using this al-
gorithm, we can identify the victim in the local networks
of interests. Unlike other related work that use illegiti-
mate scans to inactive IP space, our approach analyzes
inbound and outbound scans to realistic and active net-
works. Another approach is to examine the short-term
network traffic of infected hosts. With sufficient num-
bers of honeypots, we logistically determine what type
of network traffic contributed to a honeypot’s infection.

These techniques work well on a local level, and of
course provide another valuable stream of information
to a CDC-style monitoring system. The key difference
is that with these approaches one does not have to wait
for the global monitoring system to count enough vic-
tims to act. Local knowledge of directed worm scanning
can be acted upon immediately, and shared with others
in the monitoring network. Thus, just as the CDC relies
on regional networks, we propose the equivalent of local
public measures for smaller networks.

The rest of this paper is organized as follows: Section 2
is a discussion of related work. In Section 3, we describe
our experiments and performance evaluation of two ex-
isting worm detection techniques using real data. We
describe our Destination-Source Correlation (DSC) al-
gorithm in Section 4. Section 5 presents our statistical-
based worm detection technique using honeypots. We
summarize our work and point out the future work in
Section 6.

2 Redated Work

In worm propagation study, Kephart et. al [7, 8, 6]
proposed an epidemiological model in modeling virus
spread in 1991 and 1993. Worm researchers adapted
the epidemic propagation model to model the spread
of worms. In particular, Staniford [17] first applied a
“simple classic epidemic model” to study the Code Red
propagation. Zou et. al [23] proposed a modified “two-
factor” epidemic model that considered the situation of
human countermeasures and congestion due to worm
traffic. In [2], Chen et. al proposed a discrete time-
based propagation model to track the spread of worms
using random scanning methods. In this approach, they
also consider the effects of patching and worm cleaning
during the worm propagation.

Multiple approaches have been proposed for worm early
detection. Staniford et al. [18] first proposed an idea of
establishing a cyber “Center for Disease Control” that
takes leading roles of identifying worms, counter mea-
suring worm propagation, analyzing new vectors and
new worms. In collecting information of worm activi-
ties, Moore [12] proposed to set up distributed “network
telescopes” using a reasonable large fraction of IP space
to observe security events occurring on the Internet. In
practice, SANS has established an “Internet Storm Cen-
ter” that collects security logs from distributed intrusion
detection systems (IDS) around the globe [4]. The na-
ture of all the approaches is to take advantages of dis-
tributed security sensors to gather security information
from a wide cyber territories. Correlation techniques are
then applied to analyze information and identify worms.

In area of worm early detection techniques, Zou et.
al [22] proposed a Kalman filter-based detection algo-
rithm. This approach detects the trend of illegitimate
scans to a large unused IP space. In [21], Wu et. al pro-
posed a victim counter-based detection algorithm that
tracks the increased rate of new infected hosts. Worm
alerts are output when anomaly events occur consecu-
tively over a certain number of times. Berk [1] proposed
to use ICMP “Destination Unreachable” messages col-
lected at border routers to infer worm activities. This ap-
proach is based on threshold-based anomaly detection.

Researchers have also used honeypots to distract attack-
ers, early warnings about new attack techniques and in-
depth analysis of an adversary’s strategies [16, 15]. Tra-
ditionally, honeypots have been used to gather intelli-
gence about how human attackers operate [16]. Using
honeynets to gather and identify attacks was also pro-
posed and implemented [13]. In [10], researchers used
honeypots inside a university to detect infected machines
behind a firewall. This augmented an existing IDS and
sometimes provided earlier warnings of compromised
machines. However, traditional honeypots require the
security analyst intensive efforts to review logs that has
made them unsuitable for a real-time IDS. Researchers
have also considered using virtual honeypots, particu-
larly with honeyd [14] which has been extended to emu-
late some services, e.g., NetBIOS. Recently, honeyd has
been offered as a way to detect and disable worms [14].
We believe this approach has promise, but it has to over-
come a few significant hurdles before it is used as an
early warning IDS. It is not clear how a daemon em-
ulating a network service can catch zero day worms. If
one knows a worm’s attack pattern, it is possible to write
modules that will behave like a vulnerable service. But
before this is known, catching zero day worms requires
emulating even the presumably unknown bugs in a net-



work service. Worms that do anything complex (such as
downloading a Trojan) can easily evade honeyd, until a
module emulating the bug is created.

Our work using honeypot is different from other related
work in that we focus on detecting zero-day worms. We
apply statistical technique to analyze and correlate port
activities and state of honeypots to detect worm activ-
ities. We do not count on pattern matching or prior
knowledge of worm signatures in the worm detection.
Therefore, our work is more analogous to anomaly de-
tection in the intrusion detection field.

3 Reality Check

Based on the nature of our monitoring networks, we
applied two existing worm detection algorithms, i.e.,
Kalman filter-based early detection model [22] and vic-
tim number-based detection algorithm [21], to our real
data corresponding to multiple worm activities collected
from our monitoring systems.

In this section, we describe our experiments and evaluate
the performance of these two detection models applied
in our networks.

3.1 Monitored Networks

In our study, we use a darknet that consists of 100 /24
networks (i.e., 25,600 nodes). The darknet is assigned
unused IP addresses and keeps inactive in the Internet.
It provides passive logging for inbound traffic and does
not have any outbound traffic. Additionally, we also col-
lect data from some 20 /24 (5,120 nodes) live machines,
variously deployed as honeypots, honeynets and other
interactive systems. In the experiments described in this
section, we only use real data collected from our dark-
net. In particular, we applied the Kalman filter-based
algorithms and victim number-based detection model to
data corresponding to worms Code Red, SQL Slammer
and Blaster respectively.

3.2 Kalman Filter-based Approach

Kalman Filter [5] is a set of recursive filtering algorithms
that provide an efficient computational solution of the
least-squares method. The filter supports estimations of
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past, present and future states, even when the precise na-
ture of the modeled system is unknown.

In [22], Zou et. al applied Kalman filters to the illegit-
imate scan traffic to the monitoring system to detect a
worm at its early stage. In their approach, they used the
idea of “detecting the trend, not the rate” of the illegiti-
mate scans to the monitored networks [22]. In particular,
they used Kalman filter to estimate the value of worm in-
fection rate, denoted as «. In practice, for each TCP and
UDP port, an alarm threshold of the illegitimate scans
is set. The Kalman filter is not activated until the scan
traffic is over the alarm threshold for a certain number
of times consecutively, denoted as r, e.g., three times.
If the illegitimate scans are caused by non-worm noise,
the estimated infection rate would oscillate around zero
or oscillate around without a central point. Otherwise,
if the scans are from a worm, the estimated value of in-
fection rate output by Kalman filter would stabilize and
oscillate around a constant positive point even if the es-
timated infection rate is not well converged [22]. They
evaluated the performance of worm detection algorithms
based on simulation and assumed that the propagation of
worms follows an epidemic model [22].

In our experiments, we applied Kalman filter as de-
signed in [22] to the data collected from our darknet.
As our darknet uses unused IP addresses and only pas-
sively logs the incoming traffic without any interactions
or outbound traffic, we consider all the ingress scans
to our darknet as illegitimate. In our experiment, we
tested Kalman filter-based detection algorithms to the
real data of worms Code Red, Slammer and Blaster re-
spectively. The threshold of illegitimate scans traffic was
set based on the observations of our darknet during non-
worm days.

In Code Red and Blaster experiments, we set the moni-
toring time unit as 1 minute as did in [22]. As [22] did,
the Kalman filter was activated when the over-threshold
events happen consecutively 3 times, i.e., r = 3.

Figure 1(a) shows the estimated infection rate o com-
puted by Kalman filter in the worm Code Red. From the
figure, we can see that « stabilizes and oscillates around
a positive central point, which indicates an identification
of worm. Figure 1(b) shows the output of Kalman filter
that indicates the worm Blaster’s activities. In both ex-
periments, Kalman filter-based detection algorithm did
not output any false worm alerts.

In the experiment of worm SQL Slammer, as [22] did,
we set the monitoring time interval as 1 second because
SQL Slammer worm propagates very fast. In the exper-
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iment, we noticed that Kalman filter’s output was a lit-
tle ambiguous corresponding to scans to TCP port 443.
We then varied the monitoring time interval as 1 second,
10 seconds and 30 seconds respectively to observe the
Kalman filter’s outputs.

Figure 2 and 3 show the Kalman filter’s estimation of
infection rate of SQL Slammer worm and illegitimate
non-worm scans to TCP port 443 respectively. In the
Figure 3(a), we can see that the output of Kalman filter
has a step-style stabilization that makes it a little am-
biguous to tell if it is a worm activity or not. When we
increased the monitoring time interval from 1 second to
10 seconds and 30 seconds, Figure 3(b) and 3(c) show
that the corresponding Kalman filter’s outputs stabilize
at a negative central point, which indicates that scans to
TCP port 443 are non-worm activities. In this case, al-
though increasing the monitoring time interval can elim-
inate some ambiguity, at the same time, the detection
time (i.e., the time that « begins to stabilize) is also de-
ferred as shown in Figure 2. There exists a trade off
between the elimination of ambiguous result and detec-
tion time. In this example, it also shows and confirms
that the monitoring time interval is an important param-
eter in the Kalman filter-based worm detection system as
mentioned in [22].

Considering the size of our monitoring network ( 25,600
unique inactive IP addresses), we may miss observing
some activities that happen elsewhere. Therefore, our
evaluation on Kalman filter-based detection algorithm is
limited to relatively small networks instead of the larger
monitoring system, e.g., networks with 220 IP addresses,
as discussed in [22].

From our experience in these experiments, we notice
that when deploying Kalman filter-based algorithms in
our darknet or smaller local networks, we have to face
the challenges of the sensitivity of Kalman filter’s out-
put to the monitoring time interval. When varying the
monitoring time interval, the output of Kalman filter
can be different. One possible solution is to run multi-
ple Kalman filter-based detection engines with different
time intervals parallel. However, it is also desirable to
develop detection algorithms that can be practically de-
ployed in local networks and less sensitive to monitoring
time intervals.

3.3 Victim Number-based Approach

Wu et. al [21] proposed a worm early detection algo-
rithm based on evaluating the increase rate of source ad-
dresses of illegitimate scans to the inactive IP space (e.g.,
the darknet in our study). A victim is defined as an IP ad-
dress that sends a packet to an inactive IP space [21]. In
practice, they use the “Two Scan Decision Rule”, i.e.,
“two scans captured by the host leads to a victim” [11],
to identify victims. In the detection, a detection system
is deployed in an inactive IP space and tracks the in-
crease number of victims. For a time tick ¢, if the rate of
victim increase is over a threshold, an anomaly event is
recorded by the detection system. If the anomaly event
happens consecutively for more than a certain humbers,
denoted as r, a worm alert is output. The threshold of
victim increase rate at each time tick ¢ is computed as
~ % o where o represents the standard deviation of vic-
tim increase during the prior £ unit time intervals, and

27 is a constant [21]. The parameters, i.e., v, k,r, were
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based on normal traffic training and performance eval-
uation using background traffic traces from WAND re-
search group [19].

In our experiments, we followed the detection algo-
rithms as presented in [21]. Considering the inactive-
ness of our darknet compared with a normal network,
we also accepted the traffic traces from WAND group
as our background traffic, and used the same parameters
(i.e., v = 3,k = 200, = 10) as used in [21] in our
experiments.

In our experiments of Code Red, SQL Slammer and
Blaster worms, victim number-based detection algo-
rithm can correctly detect the worm propagation. The
detection engine did not output alerts to non-worm ac-
tivities in experiments of Code Red and SQL Slammer
worms. However, in the experiment of Blaster worm,
we noticed that there were multiple false positive alerts
corresponding to scans to TCP port 139 and 445.

In Figure 4(a) and 4(b), the dotted lines represent the
time points when the detection engine outputs worm
alerts corresponding to scans to TCP port 139 and 445
respectively on August 6, 2003, 5 days before Blaster
worm broke out on August 11, 2003. Based on our
knowledge and analysis, we do not think the scans to
TCP port 139 and 445 were worm-related on August
6, 2003. Therefore, we regard them as false positive
alerts. In the figure, we can also see that some spikes
of scan traffic did not trigger the detection engine to out-
put alerts. The reason is that the detection algorithm is
based on the anomaly detection of the victim increase
rate instead of scan volume. It also requires the abnor-
mal victim rate to increase a number of times consecu-
tively (i.e., parameter ) before a worm alert is output.

As discussed in Section 3.2, we did not have enough data
to evaluate the victim number-based detection algorithm
on a large network (e.g., 22°-node networks) as sug-
gested in [21]. We also realize that the limitation of our
darknet size may suppress observation of some activi-
ties and therefore may degrade detection performance.
Nonetheless, we desire a robust and stable worm detec-
tion algorithm that can be deployed on a relatively small
network.

4 Destination-Source Correlation (DSC)

Most worms that we have observed so far have the fol-
lowing common characteristics. First, they generate a
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substantial volume of identical or similar traffic to the
targets. However, the polymorphic worm may not follow
this feature. Second, the worm infects vulnerable hosts
for propagation. Third, many worms, e.g., Code Red
and SQL Slammer, use random scanning to probe vul-
nerable hosts. Therefore, scans generated by this type
of worm can reach inactive IP addresses. The current
worm detection approaches, e.g. [22, 1, 21], mainly fo-
cus on the first and third characteristics of worms for
detection. In our study, we believe the infection nature
is the most important common feature of worms. There-
fore, we designed worm detection algorithms based on
investigation of worm infection.

The worm infection feature can be summarized as fol-
lows. After a vulnerable host is infected by a worm on a
port : (i.e., the host is the destination of an early worm at-
tack), the infected host will send out scans to other hosts
targeting at the same port ¢ in a short time (i.e., the in-
fected host is a source of new worm attack). For ex-
ample, an infected host by Slammer worm on port 1434
also sends out scans to port 1434 of other hosts. Our de-
tection model outputs worm alert when identifying this
type of destination-source infection pattern.

In this section, we introduce our worm detection algo-
rithm based on destination-source correlation of infec-
tion patterns.

4.1 DSC Algorithm

General idea: We keep a sliding window of previous
network traffic (source and destination addresses of SYN
and UDP traffic). Two general items are tracked: for
each port witnessed in this traffic, we record the address
of the inside destination host and the scanning source
from the monitored network. The addresses can be IP, or
MAC in order to defeat spoofing IP worms. If a source
scan originates from a host that previously received a
scan on an identical port, we increment a counter. If this
counter passes a threshold trained for the network, we
issue an alert.

We describe a simplified version using Bloom filters.
For every port, we use three Bloom filters denoted as
D;_1,D;,S;, which track the destination addresses at
time ticks ¢ — 1 and ¢ for scans directed at the network,
and the source addresses for traffic (SYN and UDP) orig-
inating at time tick ¢ from the network. Thus, at every
time tick 4, we record the suspicious victim’s IP address
and the number of scans the victim sends out (i.e., scan
rate). If the scan rate deviates from a normal profile, the
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Figure 4: Alerts output by victim number-based detection algorithm on Aug. 6, 2003

suspicious victim is regarded as a real victim infected
by a worm. We then output a worm alert and indicate
the victim address and its scan rate. With technique of
anomaly detection, we can achieve very low false posi-
tive rate. We discuss our anomaly detection technique in
Section 4.3.2.

4.2 Analysisand Simulation

4.2.1 Different Scan Methods

Analytical Active Worm Propagation (AAWP[2]) model
is a worm propagation model based on discrete time.
Zou et. al [22] and Weaver [20] used epidemiologi-
cal models to represent worm propagation. These two
worm propagation models have similar performance [22,
2, 21]. We use the discrete time-based AAWP model for
simulation and detection time analysis.

In the AAWP model, the number of infected hosts at
time tick 4 is shown in Eq.( 1), where N is the total num-
ber of vulnerable machines in the Internet, T is the size
of IPv4 space used by the worm to scan, s is the scan
rate, n; is the number of infected hosts at time tick 7. We
have:

Nip1 = N; + [N - n,] (1 - (1 — (l)

)

We analyze the performance of our DSC algorithm un-
der three different worm scan strategies. We measure the
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detection performance in terms of infected percentage of
whole vulnerable hosts when a worm alert is output.

Random scan: This is a normal scan strategy used by
many worms, e.g. Code Red, Slammer. In the paper we
assume the vulnerable hosts are uniformly distributed
in the whole scanning space of worm as current worm
propagation models do. For random scan, the number of
vulnerable hosts in our monitored network is V. = N—TD,
where D is the size of our monitored network, T' = 232.

The chance of a certain node not being hit by a random

scan is 1 — % We raise this chance to the power of

Z;:o sn; to reflect all of the scans being performed up
to time 4. The chance of being hit at least once by time 4
is therefore one minus this value. Therefore, the number
of infected hosts in our monitored network at time tick 4
is shown in Eq. ( 2), where T = 232,

O]

Routable scan: A routable scan worm only scans
routable addresses which is around 7' = 10° [21, 24]. In
the routable scan, the formulas to compute the infected
hosts at time tick ¢ and the number of infected hosts in
the monitored network are the same as in the random
scan scenario. The only difference is that 7' = 10°.

Divide-Conguer scan: This is an extension of routable
scanning. In Divide-Conquer scan, when a worm from
host A infects a vulnerable host B, the worm at A splits
the scan target IP addresses into halves and transmits one



half of target IP addresses to victim B. Host B thenis re-
sponsible for scanning the half of IP space received from
host A [21, 24]. In this scan technique the worm does
not revisit the addresses it already visited. So, the num-
ber of infected hosts at time tick ¢ is shown in Eq.( 3).

1
Nip1 =N + [N —ny] (1 —(1- 71.1)”“)
T =3 i—08n;

The expected number of newly infected hosts in our
monitored network at time tick  is 222 times (1 — (1 —
%)5’“), the possibility of being hit at time 1.
Since infected hosts will not be hit again [21], the total
number of infected hosts in our monitored network at
time 4 is shown in Eq. ( 4), where T = 10°.

4.2.2 Simulation with Various Scan Methods

We simulate the worm propagation with the three scan
techniques discussed above and evaluate the detection
time of our DSC detection algorithm. We define the de-
tection time as the time when at least one infected host
is identified, i.e., the time when v; > 1. (We assume
that our DSC algorithm can detect a worm when the first
victim is seen.)

Figure 5 shows the worm propagation using three dif-
ferent scan methods. It also indicates the detection time
and corresponding infection percentage. We can see that
our algorithm can detect worm at an early stage. Ta-
ble 1 shows the detail information about the worm de-
tection time and corresponding infection percentage of
different scan methods using /12 and /16 networks re-
spectively. Table 1 indicates that the detection perfor-
mance of routable worm and Divide-Conquer worm are
better than that of random scan worm. The reason is that
the random scan worm uses the whole IP V4 space as
scan target address, i.e., T = 232, while the other two
types of scan worms only targets routable IP V4 space,
i.e, T = 10° And in our assumption, all vulnerable
hosts are uniformly distributed in the scanning space of
worm As shown in computing the number of vulnerable
hosts in a network, i.e., V = %, the number of vulner-

able hosts in a network in the random scan case is less
than that of the routable or Divide-Conquer scan cases.
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Figure 5: Detection time of worms spreading with three
scan methods. Size of monitored network: a /12 net-
work; hit list=1; N=500,000; scan rate=2/sec; death
rate=0; patch rate=0

Figure 6(a) shows the corresponding infection percent-
age when we detect a worm using different scan tech-
niques with the same scan rate as 2 scans/second under
different sizes of monitored networks. From this figure,
we can also see that our DSC algorithm is very effective
in detecting routable and Divide-Conquer scan worms.
When using a relatively small /16 monitored network,
we can still detect these two kinds of worms before they
infect 3.05% of whole vulnerable hosts in the Internet.
For the random scan worm, using a /12 monitored net-
work, we can detect a worm before 0.82% of whole vul-
nerable hosts in the Internet get infected.

Figure 6(b) shows the detection time using different
scan rates and different sizes of monitored network for
routable worm. Our detection time (i.e., the % of whole
vulnerable hosts) with the DSC algorithm is nearly the
same even when the scan rate is very high. This means
our DSC algorithm is not sensitive to scan rate. Even for
a very fast worm, the detection time is almost the same,
in fact a little earlier.

There may exist a concern that it is uncertain to output a
worm alert when only one victim is detected. We studied
the relationship between the number of infected hosts in
the monitored network and the detection time as shown
in Figure 7. From Figure 7(a), we can see that in a /16
network, to have 2 routable worm victims detected, it re-
quires an infection percentage of only 0.38%. It is still

g in an early stage. Figure 7(b) shows that given a certain
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Table 1: Worm detection time under different scan methods

Scan Type Scan Space | Monitor Space | Detection Time (sec) | Infection Percentage (whole Internet)
Random 232 /12 35767 0.82%
Random 232 /16 348243 13.11%
Routable 10° /12 6868 0.19%
Routable 10° /16 9670 3.05%
Divide-Conquer 109 112 6865 0.19%
Divide-Conquer 10° /16 9624 3.01%
Victim
. Hmber DSC Kalnan think that our algorithm performs better.
For CodeRed and Blaster worms, our DSC did not out-
1000} ﬁ'i‘ ‘Y put any worm alerts because there was no infected worm
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Figure 8: Detection time of three detection models to
SQL Slammer worm

infection percentage, we will have more infected vic-
tims in a larger monitored network. For example, given
13.11% infection percentage of all vulnerable hosts in
the Internet infected by a random scan worm, there are
16 victims detected in a /12 monitored network, 4 vic-
tims in a /14 network and 1 victim in a /16 network.

4.2.3 Honeynet Verification

We applied our DSC algorithm to data collected from
our honeynet during the breakout of SQL Slammer
worm. Figure 8 shows that our algorithm can detect the
Slammer worm at an early stage. Further, we can also
determine all of the victims’ IP information. The fig-
ure shows that the victim number-based detection algo-
rithm outputs the worm alert earlier than the other two
detection algorithms. However, considering the fact that
the victim number-based algorithm has the weakness of
producing false alerts as discussed in Section 3.3, and
it cannot detect Divide-Conquer scan worms [21], we
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victim in our honeynet. The reason is that our honeynet
hosts were configured to be immune to these two worms.

4.3 Analysisand Discussion

4.3.1 False Alarm Caused by Bloom Filter

Since we use Bloom filters to record IP addresses and
inquire from them, we should analyze the false alarm
caused by them. Bloom filters do not cause false nega-
tive. Therefore, we only need to evaluate the probability
of false positive, the chance that some addresses are in-
correctly counted as worm victims. The probability of
false positive is in Eq.( 5), where m is the size of bloom
filter in bits, n is the total number of hosts inside the
monitored network, k is the number of hash functions
used. I; is the number of hosts inside the monitoring
network that send out scans at time tick 4, and I;_; rep-
resents the number of all inside hosts that are scanned at
time tick ¢ — 1.

(-1 -1 -a- %)“f))’“
<((1=(1= 51— 1-5)km)* (5)
< (1—e )2k

From this formula, we can see that if 7 is big and we
have a proper k, the number of hash functions used in
Bloom filter, the probability of false positive would be
very low. For example, when & = 30, k = 12, the
probability false positive is less than 2.7225 = 10712,

Assume we have a /16 network, it is usually impossible
for every IP to be mapped to a real host. Assume we have



n = 2 = 16,384 number of hosts in the monitored
network and ™ = 30, then the size of Bloom filter is
m=30n = 491, 520 bits = 61, 440 bytes.

4.3.2 False Alarm Caused by Threshold

In our detection algorithm, we need to detect the
anomaly of outbound scanning rate from suspicious
worm victims. We can apply heuristics of anomaly de-
tection techniques to identify the anomaly. In practice,
we first establish the normal profile of the outbound scan
rate of hosts which have worm-like behavior (i.e., the
host is first scanned, then sends out scans on the same
port). In our study, we adapt an anomaly detection tech-
nique based on Chebyshev’s inequality used in [9].

For a given random variable z, the Chebyshev inequal-
ity provides an upper bound on the probability that the
value lies outside a certain distance from the variable’s
mean u. In the training phase, we approximate the mean
w and the variance o2 of the real scan rate distribution
to each port by computing the sample mean p and the
sample variance o2 for the scan rate sy, s, ..., $,,. In the
detection phase, the anomaly detection engine assess the
regularity of a value with scan rate .

The intuition of applying Chebyshev inequality to
anomaly detection is that if a value (denoted as r) de-
viates from the mean g more than the normal deviation
profile (i.e., |z— ul), this value r is identified as anomaly.
In particular, a Chebyshev inequality can be represented
as Eq.( 6) where t is a threshold, and p is probability.

0.2
< —

’ ©)

p(lz —pl > 1)

In our study, we substitute ¢ with the distance between
the scan rate r and the mean p of the scan rate distri-
bution (i.e., | — u|). The resulting probability value of
upper bound of r’s deviation from the mean is Eq.( 7).

plz —p| > |r—pl) <p(r) = ( ™

r— p)?

In our experiments, we used real traffic traces provided
by the WAND group (traffic logs of /16 network) for
training. The purpose of this training is to see whether
we can establish a “normal” profile that includes some
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infection-like behaviors (i.e. a host is scanned first, then
sends out scans to same port of other hosts in a short
period of time), and what the false alarm rate may be if
such profile is used for anomaly detection.

We selected a 65GB (compressed) trace sample, repre-
senting a continuous six and one half week trace be-
tween February and April 2001 at the University of
Auckland uplink. We split the data into two parts for
training and testing respectively, in particular, 80% of
the trace was used as training data and the rest 20% is
used for testing the false positive rate. We first estab-
lished a normal profile of scan rate for every port im-
mediately after infection-like behavior. Thus, if a host
received traffic on port ¢, and then generated traffic to re-
mote port ¢, we measured the outgoing rate. We focused
on traffic from some representative TCP ports, i.e., 21,
22, 23, 25, 80, 139, 445 and UDP ports, i.e., 53, 1434,

Surprisingly, we did not find any infection-like behav-
iors on all selected ports except port 80. There were
25 infection-like behaviors total on port 80, however,
the immediate outgoing scan rate after infection-like be-
havior to external port 80 proved to be very small, i.e.,
p = 0.1,0% = 0. Testing results showed that the false
positive rate is 0% in our WAND data experiment.

4.4 Advantages of Our DSC Algorithm

As soon as there is a host in our network infected by a
worm, we can tell there is a worm. This is fast, espe-
cially for routable worms and Divide-Conquer worms.
Current algorithms, e.g., Kalman and victim number-
based, are effective against those using random scan-
ning. For routable worms, Divide-Conquer scan worms
or smart worms that only scan to real, in-use IPs,
their algorithms may not be effective. In fact none of
the current algorithms can detect Divide-Conquer scan
worms. The Kalman filter study, for example, only used
a /12 network to detect random scanning worms [22].
For routable worms, the study suggested upgrading to
IPv6 [24]. Victim number-based approaches cannot de-
tect Divide-Conquer scans worms [21]. But our DSC is
very effective to these kind of scan methods.

The advantages of our DSC approach compared with
others are the following. First, DSC algorithm aims to
detect real worm victims with local network/honeynet,
not just the scan traffic increasing problem. Second, our
algorithm can identify the real worm victims inside a
local network, which provides important information to
local network administrators. Third, our algorithm is



effective to detect worm using non-random scan tech-
niques, e.g., routable worm, Divide-Conquer or smarter
worm that only scans to real IPs. Fourth, with distributed
deployment of our detection algorithm, we can not only
detect the worm in very early stage but can also deter-
mine the worm victims’ distribution. Fifth, we can have
accurate response to accurate individual victims. For ex-
ample, we can block the port of real victim instead of the
port of all hosts in a network. And more actively, we can
immediately take actions (e.g. patching) to immunize
the victims.

One major difference between our approach and other
approaches, e.g., [22, 21], lies in the data sources. They
proposed to apply the detection mechanisms to data col-
lected from inactive IP addresses, e.g., darknet. Our ap-
proach can be used in production networks. Therefore,
we believe our technique is complementary to other ex-
isting worm detection algorithms.

5 HoneyStat

We also propose a means of augmenting darknets using
modified honeypots to enrich the information they yield.

5.1 Honeypots

Honeypots have been traditionally used to capture ma-
licious code and provide security analysts with small,
high value data sets [13, 10]. Honeypots focus on a
particular security problem, like sampling a particular
worm or virus, or monitoring live interactive sessions
with hackers to learn their techniques and capture their
tools. They are traditionally labor intensive, sometimes
requiring hours to analyze only minutes of captured ac-
tivity. While researchers are starting to find wider roles
for honeypots, their use still requires intensive-hand ver-
ification and analysis. We propose the use of honeypots
to gather statistical information about network activity
and detect worm propagation.

5.2 Possible Honeypot Uses

We begin with a few intuitions about honeypot analysis,
and how they relate to worm detection.

First, let us consider the simple scenario where a honey-

pot “victim” receives network traffic from a remote host, 1

and then begins to send out traffic to different machines.
One might suppose that the traffic sent to the honeypot
was a worm. Or, it could the actions of a “live” hacker.
Our suspicions become stronger if there are similarities
in the traffic sent to and generated by the honeypot. For
example, if the destination ports are always the same, or
if the payload is substantially similar, one can suspect
malware.

Further proof comes when one observation follows
another—-when multiple honeypots are compromised in
a pattern. This is not unlike how security researchers
currently spot fast breaking worms and viruses. Using
e-mail, IRC or instant messaging, researchers compare
local observations, and quickly spot emerging patterns.
We propose the use of specially modified honeypot sen-
sors to automate this process, and help detect worm out-
breaks.

5.3 Modd of Infection

A key assumption in our monitoring system is that the
worm infection can be described in a systematic way.
We first note that worms often generate network activity
during the initial infection phase. The Blaster worm is
instructive.

Blaster consists of a series of modules designed to infect
a host. The first module was based on a widely avail-
able RPC DCOM exploit that spawned a system shell
on a victim host. The “egg” payload of the worm was
a separate program (usually “msblast.exe”) that under-
went many revisions and changes. So, while Blaster
broke out on August 11, 2003, there were many other at-
tack tools based off the original DCOM exploit. Blaster
was just the first to automate replication.

The infection process, illustrated in Figure 9, begins
with a probe for a victim providing port 135 RPC ser-
vices. The service is overflowed, and the victim spawns
a shell listening on a port, usually 4444. (Later genera-
tions of the worm use different or even random ports.)
The shell remains open for only one connection and
closes after the infection is completed. The shell is used
to instruct the victim to download (often via tftp) an
“egg” program. The egg can be obtained from the at-
tacker, or a third party. The time delay between the ini-
tial exploit and the download of the egg is usually small.
Exploits that wait a long period to download the egg risk
having the service restarted, canceled, or infected by
competing worms (e.g., Nachi). Still, some delay may
occur between the overflow and the “egg” transfer. All
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Figure 9: General pattern of Blaster worm attack. Be-
cause of modular worm architectures, victims are first
overflowed with a simple RPC exploit, and made to
obtain a separate worm “egg”, which contains the full
worm. The network activity between the initial overflow
and download of the “egg” constitutes a single observa-
tion. Multiple observations allow one to filter out other
scans arriving at the same time.

during this time, other network traffic may arrive.

Traditional worm detection models deal with worm in-
fection at either the start or end of the cycle shown in
Figure 9. For example, models based on darknets con-
sider only the rate and origin of incoming scans-the traf-
fic at the top of the diagram. The DSC model also con-
siders scans, but also tracks outgoing probes from the
victim-traffic from the bottom of the diagram. The ac-
tivity in the middle—from initial infection to subsequent
attack—has a distinct enough form that one can track it in
a network.

Even if no buffer overflow is involved, as in the case
of mail-based worms and LANMAN weak password
guessing worms (e.g., pubstro worms), the infection still
follows a general pattern: a small set of attack pack-
ets obtain initial results, and further network traffic fol-
lows, either from the egg deployment, or from subse-
quent scans. Thus, our proposal is not limited to Blaster,
but uses it as an illustrative example.

54 HoneyStat Monitoring

We propose a new variation of honeypots, called Hon-
eyStat, to provide early detection and local response for
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worm outbreaks. Unlike traditional honeypots, Hon-
eyStat nodes are not necessarily used for tracking live
hackers. (Of course, they could provide this secondary
use). Instead, HoneyStat nodes are used to gather statis-
tical data information about network attacks.

The key idea is to deploy large numbers of honeypots
on virtual machines, each multihomed to cover a large
address space. When a honeypot is attacked, the intru-
sion is detected, and the virtual machine image is reset.
Statistical properties of the attack are recorded, such as
which ports were active just before the attack was dis-
covered. These observations are then combined with
other observed attacks. A statistical analysis attempts
to discover patterns indicative of a worm outbreak.

So, while honeypots trap hackers, HoneyStat nodes track
worms. This approach differs from DSC in many ways.
First, while DSC uses real network or honeypot traffic,
HoneyStat works only on special honeypot networks.
Second, while DSC matches the same port being used
for source and destination scans, HoneyStat matches ar-
bitrary pairs of ports. Potentially DSC will notice vic-
tims earlier than HoneyStat, provided the infection vec-
tor uses the same ports. However HoneyStat can poten-
tially provide more information about the worm behav-
ior.

In more detail, we describe the deployment of HoneyStat
nodes:

First, an emulator (e.g., Bochs or VMWare) is used to
expose a virtual machine to the outside network. The
guest operating system in the emulator is configured to
provide a wide range of services. Vendor patches for
any of the services are not applied, except in rare cases.
An emulator is used instead of a live machine to facility
rapid resets of the guest OS image. This lets one deploy
as many honeypots as possible, the goal being to interact
with suspicious traffic as much as possible.

Additionally, the honeypots are configured to direct as
much traffic as possible back towards other honeypots
and darknets. For example, some worms such as the re-
cent MyDoom worm spread via e-mail, and would be
missed by simple darknet scan observation techniques.
To track worms traveling “under the radar”, the honey-
pots are configured with honeytokens: e-mail address
books for bogus users at other honeypots and darknet
nodes.

Second, the honeypot is configured to not generate any
outward network traffic, e.g., windows NBT probes. The
honeypot should remain silent, since originating out-



ward traffic constitutes a trigger event. In our model,
a honeypot is deemed active or infected when it sends
out SYN or UDP traffic.

Third, a separate process monitors the virtual machine’s
disk image, and network activity. If outgoing connec-
tions are made from the honeypot, an “HoneyStat event”
is recorded, and after a suitable short period of time (e.g.,
just long enough for the “egg” to arrive, or after writes
complete to key directories and registry settings), the
honeypot is reset, using an archived copy of the orig-
inal disk image, or a round-robin style set of identical
images.

Fourth, once a HoneyStat event occurs, a range of net-
work traffic just before the event is saved, e.g., 5 minutes
before the honeypot “wakes up”. The traffic is combined
with other observations, and if a logistical analysis of the
data identifies a common cause, an alert is issued. The
intuition is this: some recent event may explain why this
honeypot woke up. We might not find the explanation in
all events, so a statistical analysis is used to sift out the
“liveware” from the wormware.

Finally, once the honeypot event is recorded, the disk
image is reset to a fresh copy of the Guest OS. (In our
prototype, we used a round-robin set of identical images,
50 that service was restored in seconds, and then used a
slower thread to restore infected images.) Additionally,
one might make copies of the files alerted or created by
the infection.

Thus, HoneyStat nodes are used to scrutinize the random
scanning and attacking conducted by worms. If one is
fortunate, or the target of a directed worm, a honeypot
could potentially provide very early detection, perhaps
even before other rate-based algorithms stabilize.

We have deployed a working prototype of such a system,
using commaodity hardware for a single IP. We are able to
measure the mean time before an infection occurs, and
also record the type of infection that took place. Without
supervision, the system gathered a complete collection
of Blaster worm variants, scanning Kits, pubstro worms,
and a few root kits. We are currently expanding this
monitoring to dozens of IPs.

More importantly, we were able to automate a detection
system that recognized patterns of worm activity. This
effectively turns honeypots into a stream of very sensi-
tive monitoring nodes.
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55 Statistical Analysis

Using the data collected from the 5,000-node network,
we can locate events where enough network data was
recorded to infer how HoneyStat performs. We there-
fore provide a proof-of-concept of the algorithm, and
demonstrate its general effectiveness and resistance to
false positives. Further study can validate this prelimi-
nary observation.

Figure 10(a) shows several HonetStat nodes that have
been compromised. A search of the previous minutes
of traffic yields a list of suspect ports. Under our stated
model for worm infection, traffic to one of these ports
might explain the honeypot’s active state.

We chose not to use packet counts in our analysis, be-
cause this varied greatly in the trace data. Since one
infective packet is enough to compromise a host, we
instead chose to model the dichotomous change in the
honeypot state. The node was either dormant or active,
while the prior network provided continuous data with
their time differential.

Our objective is to detect zero-day worms that have not
known signatures. Without the ability to perform pat-
tern matching, we apply statistical technique to analyze
and correlate events in order to detect worm activities.
In particular, we apply logistic analysis [3] to conduct
port correlation. Logistic regression is a non-linear re-
gression model that analyzes the relationship between a
dichotomous variable (i.e., dependent variable) and a set
of independent variables (i.e.,explanatory variables). In
our study, we define the state of honeypot as the dichoto-
mous variable and other prior port activities as indepen-
dent variables. We then apply logistic analysis to select
factors (or port activities) that can explain honeypot ac-
tivations. The basic form of the logistic model expresses
binary expectation of honeypot status, E(Y"), as seen in

Eqg. (8).

1

ZW,Z=ﬂ0+51X1+...+5an+6

E(Y)

Here, Y represents the boolean HoneyStat node state,
i.e., active or dormant, and 3; is the regression coef-
ficient corresponding to the X; variable, or individual
port. Only those ports that had scans just before the
honeypot event are considered. The value used for each
variable X; is the inverse of the time difference between
the observation and the honeypot event. Thus, ports that
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Figure 10: a) HoneyStat worm detection for Blaster. Upward arrows, not to scale, indicate the presence of out-
going traffic from the HoneyStat nodes. We take traffic from five minutes prior to these points and analyze what
port activity could explain the honeypot activity. A logit analysis shows that prior scans to port 135 explains these
episodes—effectively identifying the blaster worm. b) Avoiding false positives. Here, we see a Trojaned honeypot
node becoming active. However, since this event is seen only in isolation (one honyepot), it does not trigger a worm

alert.

had traffic just before the honeypot woke up are favored.
(This is consistent with our model of worm infection.)

As shown in Table 2, a backward likelihood ratio analy-
sis of the honeypot data shows that of all the variables,
port 135 explains the tendency of honeypots to become
active. (In our particular example, one can even visually
confirm in Figure 10(a) that honeypot activity took place
right after port 135 traffic arrived.) The Wald statistic
indicates whether the j (i.e., the coefficients shown in
Eq. 8) statistic significantly differs from zero.

The significance column in Table 2 is the most critical
for us to filter out unrelated port activities to the active
state of honeypot. In our experiment, we set up the
threshold of significance level as 5%. The lower the
significance score of a port, the more chance that the
port activity has influenced the activation of honeypot.
Therefore, any port activity with a significance score less
than the threshold (i.e., 5%) is regarded as a significant
explanation to the honeypot state. As shown in Table 2,
we can filter out port 80, 8080 and 3128 from explana-
tory variable list. In Wald statistic, a large coefficient
B causes a larger standard error. Therefore, we also fil-
ter out port that has a larger standard error. In our case,
as shown in Table 2, we can rule out port 139 and port
445 as likely “causal” ports. In Table 2, port 135 has the
most explanatory power to the active state of hoeypot,
i.e., worm activity.
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In this case, the logit analysis performs two useful tasks.
First, as shown in Table 2, the high standard error value
of port 139 rule it out as a likely candidate port. This
outcome of the HoneyStat analysis contrasts with other
algorithms, e.g., Victim Count[21] that generated false
alarms on port 139 scans. HoneyStat was able to use
the inconsistent time differences between scans to port
139 to rule it out as a causal factor. Similarly, the only
other likely port identified by other algorithms, port 445,
is likewise eliminated.

Second, the logit analysis also suggests a possible cause
for the observed honeypot activities. In this case, the
higher statistical analysis of port 135 suggests that unit
changes in port 135 traffic greatly improves the odds that
a honeypot becomes active. While we might want more
samples and certainty, we can at the very least rank likely
ports in an alert. Thus, HoneyStat reports a theory of
worm activation, and not merely the presence of a worm.
Other information, such as rate of scans, can be obtained
from the traffic logs captured for the logit analysis.

The key to the success of this analysis is of course a
suitable population size. If only a few HoneyStat events
are recorded, there may not be enough data to identify a
candidate. In the example above, seven honeypot events
were observed-six due to blaster worms, and one due to
and older infection. The “noise” contributed by the sev-
enth event was not enough to diminish the confidence in-
terval of the reported statistics. One could easily imagine



Table 2: Logit Analysis of Multiple HoneyStat Events

Variable | Standard Error | Wald Significance
port_80 -17463.185 | 2696276.445 | .000 .995
port.135 | 3.114 967 10.377 .001
port_139 | 1869.151 303.517 37.925 .000

port 445 | -1495.040 | 281.165 28.274 .000
port_3128 | -18727.568 | 9859594.820 | .000 .998
port_8080 | 10907.922 | 10907.922 6919861.448 | .999
constant .068 1.568 .210 1.089

situations where more noise does occur. So, if Honey-
Stat is to depend on more than good fortune, there should
be many independent observed events.

So, the HoneyStat analysis provides the following in-
sights: First, how many honeypots were compromised,
and in what time frame. Second, whether factors appear-
ing in many of the events can be eliminated. (E.g., port
139 and 445 look “hot”, but there are too many obser-
vations where these ports are silent.) Third, what fac-
tors (ranked) can explain odds changes in the honeypot
state. Instead of merely issuing an alert (e.g., “you’ve
got worms”) the HoneyStat analysis suggests a possible
infection vector (e.g., “there’s a worm, and with X con-
fidence, the worm enters on port Y and targets on port
Z”). In our example, the HoneyStat analysis reports with
some confidence that a worm is using port 135 to infect
a number of machines.

Statistical analysis, of course, can be erroneous, partic-
ularly for small sample values. Without an exhaustive
data set to test HoneyStat, we can speculate about fail-
ure conditions. First, when attackers flood the network
with tremendous amounts of extraneous traffic to con-
found analysis. In such a scenario, however, attack-
ers will have to sacrifice bandwidth needed for worm
propagation. Second, when worms take a tremendous
amount of time to download an “egg”, thereby delaying
the trigger event for the worm. Recall that we noted a
short period of time between the buffer overflow and the
transfer of the complete worm. If attackers stretch this
time period out, it would certainly add more noise to the
sample space. However, it would also significantly slow
the progress of the worm itself, since infection could not
complete until the payload is obtained. Hanging worms
also face attritional factors such as reboots, restarts, and
the management of hung programs that do not seem to
return from function calls. Future work may model this
factor, but we see it as a challenge for worm writers to
overcome.
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We located a few situations in the logs where Honey-
Stat could fail in the absence of other corrective observa-
tions. Figure 10(b) shows a particular time frame where
a honeypot started generating port 135 activity. Previ-
ous activity included incoming port 80 and 8080 scans,
and some very distant activity on port 135 outside of the
sample range. As a single observation could conclude
that port 80 explains the honeypots activities. But with
just one observation, there’s not enough data to draw
such a conclusion. As it turns out, this particular hon-
eypot was infected days earlier, and used on-and-off for
IRC relay, scanning, and testing malware. When this ob-
servation is added to the other honeypot events, it does
not significantly influence the outcome.

Admittedly, the data set we analyzed had a few fortunate
occurrences—the honeypots all reacted to the worm, and
minimal noise was discarded from the infection model
by the logit analysis. To reliably reproduce this for fu-
ture worms, one must deploy a sizeable number of min-
imal honeypots. Using strategies such as virtual ma-
chines and large multihoming, one can efficiently span
a suitable address space. The size of the data collection
required to provide early detection is no different than
the needs of DSC (see Section 4) or any other algorithm.

6 Conclusion and Future Work

In this study, we reviewed some of the monitoring strate-
gies used for large networks. The need for a global mon-
itoring system is clear. Likewise, the need for local de-
tection and response is also obvious. However, many
of the strategies are difficult to apply to local networks.
In particular, the Kalman filter and victim number-based
approaches can be difficult to manage on smaller net-
works.

We propose two algorithms tailored for local network



monitoring needs. First, the DSC algorithm focuses on
the infection relation, and tracks real infected hosts (and
not merely scans) to provide an accurate response. Sec-
ond, the HoneyStat system provides a way to track the
short-term infection behavior used by worms. Poten-
tially, this may provide a basis for statistical inference
about a worm’s behavior on a network.

We examined all of these algorithms in light of a large
data set. Nonetheless, we note for future work, the pos-
sibility of a) modifying DSC to use an adaptive time
window, adjustable with current scan rates; b) use more
real network traces to train and verify DSC; c) gather
more statistical data about honeypot interactions with
early worm outbreaks; and d) consider strategies to im-
prove the data resources available to a CDC-style center,
in light of these improved local monitoring capabilities.
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